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1. Introduction

Recently the Nambu-Lie (NL) 3-algebras [1 – 3] have been in the focus of interest since

they appear as gauge symmetries of new superconformal Chern-Simons non-abelian theo-

ries in 2 + 1 dimensions with the maximun allowed number of N = 8 linear supersymme-

tries. [4 – 7]. These theories explore the low energy dynamics of the microscopic degrees of

freedom of coincident M2 branes and constitute the boundary conformal field theories of

the bulk AdS4×S7 exact 11-dimensional supergravity backgrounds of supermembranes [8].

These mysterious new symmetries, the NL 3-algebras represent the implementation of non-

associative algebras of coordinates of charged tensionless strings, the boundaries of open

M2 branes in antisymmetric field magnetic backgrounds of M5 branes in the M2 − M5

system [9]. The NL 3-algebras are either operator or matrix representation of the classi-

cal Nambu-Poisson (NP) symmetries of world volume preserving diffeomorphisms of M2

branes [10]. Indeed at the classical level the supermembrane Lagrangian, in the covariant

formulation, has the world volume preserving diffeomorphism symmetry SDiff [M2+1].

The Bagger-Lambert-Gustaffson 3-algebras presumably correspond to the quantization of

the rigid motions in this infinite dimensional group, which describe the low energy excita-

tion spectrum of the M2 branes [11].

In the light-cone (LC) gauge, the membrane symmetries reduce to the area preserv-

ing diffeomorphisms of the membrane surface and the matrix truncation of this infinite
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dimensional group by SU [N ] [12, 13] provided a basic ingredient for the Matrix-Model

proposal [14].

In ref. [15] the SU(N) truncation, was interpreted in terms of the matrix algebra of

finite quantum mechanics on a discretized membrane surface (discrete non commutative

phase space). So one naturally could ponder about the existence of a discretized membrane

world volume of 2+ 1 dimensions and a Matrix model on it as the finite quantum mechan-

ics in three dimensions. Three dimensional classical phase spaces may arise in Nambu

mechanics [1] with the ensuing subtle issues of its quantization [3, 16 – 19].

Apart from the M2 brane dynamics, the 3-d volume preserving diffeomorphism group

appears as the basic symmetry also in the LC gauge Hamiltonian of p = 3 superbranes [10],

where all the interaction terms are expressed in terms of the Nambu 3-bracket.

In ref. [20] we exploited the NP 3-algebras to find explicit rotating, rigid body (lowest

energy), solutions of LC S3 and T 3 branes in toroidally compactified higher dimensional flat

spaces. A Matrix Model analog of these solutions and more generally for the LC dynamics

for p = 3 branes is lacking. We would like to notice at this point the Matrix model that

ref. [21] has proposed under the name “Tiny Graviton Matrix Model” for spherical (fuzzy

S3) D3 branes, as well as the construction of fuzzy S3 spheres [22].

A completely new and radical approach has been taken by the advocates of cubic matrix

algebras which presumably discretize consistently three dimensional manifolds in a similar

way that usual two-index matrices discretize surfaces. This direction is interesting by itself

but the difficulties seem to be both intriguing and challenging at the same time [23, 24].

The most mathematically complete quantization scheme for the Nambu 3-bracket up to

now is by ref. [25] where an algebraic topological quantization, the Zariski ∗ quantization

and variations thereof, has been proposed, but the algebraic complexity of the scheme

seems to hide important physical and geometrical aspects of the problem. All the other

present proposals are violating, in general, the basic properties of the 3-bracket such as

Leibniz and the Fundamental Identity [3]. For a critical and rather complete discussion

of the state of art we refer to ref. [16] and for general perspectives of the quantization of

Nambu mechanics see ref. [19].

In this work we will exploit the relation of the classical Nambu-Poisson algebra in

euclidean 3-d spaces (M3 = R3, S3, T 3, or 3-manifolds embeddable in R4) with the volume

preserving diffeomorphism algebras SDiff(M3). Moreover we shall propose a consistent

quantization prescription which offers a concrete realization of the Nambu-Lie 3-algebras

on these spaces.

In section 2 we are going to review the problem of quantization of Nambu mechanics.

In section 3 we shall discuss the basic properties of NP 3-algebras which correspond

to particular cases of 3-manifolds and pertain to Nambu mechanics.

In section 4 we will present the Lie algebra of volume preserving diffeomorphisms

SDiff(R3) in the Clebsch-Monge gauge, their relation with the NP 3-algebras on R3

as well as on T 3 and Nambu mechanics, which can be represented as flow equations of

incompressible fluids.

In section 5 we will discuss the role of Clebsch-Monge gauge in the case of a non-trivial

topology which is present in Nambu flows with vortices.

– 2 –



J
H
E
P
0
2
(
2
0
0
9
)
0
3
9

In section 6 we will propose a new quantization scheme for the Nambu mechanics which

posseses naturally the correct classical limit.

Finally in section 7 we quantize particular Nambu-Poisson 3-algebras consistently

with the classical properties of a) complete antisymmetry b) Leibniz and c) Fundamental

Identity.

The proposed quantization prescription is based on the intuitive idea that at each

point of a 3-space the volume element (Nambu 3-bracket) is defined by a triple family of

coordinate surfaces. In an analogous way the quantum volume element should be defined by

a triple family of intersecting fuzzy coordinate surfaces. The resulting quantum 3-algebras

provide concrete realizations of Nambu-Lie 3-algebras.

2. On classical Nambu dynamics in 3-D phase space and its quantization

Nambu in his classic paper [1] introduced new dynamical systems with arbitrary even

or odd dimensions of ”phase space” possessing as fundamental symmetries the volume

preserving diffeomorphism group in the place of symplectic diffeomorphisms [3, 16, 26].

The new equations of motion in the phase space M ≡ Rn are analogous to Hamilton-

Poisson equations as follows:

dxi

dt
= {xi,H1, · · · ,Hn−1} , (2.1)

where the n-bracket is defined as:

{f1, · · · , fn} = ǫi1···in∂i1f1∂
i2f2 · · · ∂infn , (2.2)

for any functions f1, · · · , fn ∈ C∞(Rn) and i1, · · · , in = 1, · · · , n.

The n-1 ”Hamiltonians” H1, · · · ,Hn−1 determine the phase-space trajectory in a ge-

ometrical way. There is also a corresponding Liouville equation for any observable f ∈
C∞(Rn),

df

dt
= ∂if · ẋi = {f,H1, · · · ,Hn−1} . (2.3)

The n-1 Hamiltonians are conserved in time. Given the initial position in the phase-space

xi
0 = xi(t = 0) they take the values

hi = Hi(x0) ; i = 1, 2, · · · , n − 1 . (2.4)

The intersection of hypersurfaces

Hi(x) = hi ; i = 1, · · · , n − 1 , (2.5)

gives the geometrical shape of the trajectory passing through the point x0 ∈ Rn [16].

This is the reason why the Nambu 3-d dynamical system is regarded as a toy model for

completely integrable systems. The basic properties of the n-bracket are:

1) Linearity

{αf1 + βg1, f2, · · · , fn} = α{f1, f2, · · · , fn} + β{g1, f2, · · · , fn} . (2.6)

– 3 –



J
H
E
P
0
2
(
2
0
0
9
)
0
3
9

2) Antisymmetry

{fσ(1), · · · , fσ(n)} = (−1)σ{f1, · · · , fn} , σ ∈ Sn. (2.7)

3) Leibniz Rule

{f · g, f1, · · · , fn} = f{g, f2, · · · , fn} + {f, f2, · · · , fn}g . (2.8)

To the above we must finally add an extension of the Jacobi identity for the Poisson

brackets, i.e. the Fundamental Idcentity(FI)

{{f1, · · · , fn}, fn+1, · · · , f2n−1} = {{f1, fn+1, · · · , f2n−1}, f2, · · · , fn} +

+{f1, {f2, fn+1, · · · , f2n−1}, f3, · · · , fn}
+ · · · + {f1, · · · , fn−1, {fn, fn+1, · · · , f2n−1} , (2.9)

for (fi)i=1,2,···,2n−1 ∈ C∞(Rn).

The FI can be proved directly either through the use of the definition of the n-bracket

or by following up the time evolution of the observable {f1, · · · , fn} on the phase - space

trajectories with respect to the Hamiltonian H1 = fn+1, · · · ,Hn−1 = f2n−1. This identity

guarrantees the fact that if (fi)i=1,···,n are each seperately conserved quantities, then the

observable {f1, · · · , fn} is also conserved. It is this property that becomes an obstacle to the

quantization of Nambu Dynamics. We would like to have a Heisenberg-Nambu extensions

of the Heisenberg quantum mechanical eqs:

i~
dx̂i

dt
= [x̂i, Ĥ1, · · · , Ĥn−1], (2.10)

where we pass from the classical position vector (xi)i=1,···,n, classical ”Hamiltonian”

(Hi)i=1,···,n−1 and the Nambu-Poisson n-bracket(2.2) to their corresponding quantum op-

erator versions (x̂i)i=1,···,n, (Ĥi)i=1,···,n−1, and Nambu-Lie n-commutator (2.10) [1, 2]. All

proposals to date for the n-commutator or the Quantum Nambu bracket fail, in general, to

satisfy both the Leibniz rule and the FI, which are crucial for the consistency of the time

evolution (2.10). It is also significant that most of them, also fail to reproduce the correct

classical limit. In ref. [16] there is a detailed discussion of the problem along with a spe-

cific resolution through the adoption of different time evolutions for different superselection

sectors of the Hilbert space.

Nambu proposed to abandon the Leibniz property and the FI (i.e. to abandon consis-

tency with unique time evolution, Liouville eq.) and insist on the linearity and antisymme-

try properties. More specifically for any n operators (F̂i)i=1,2,···,n he proposed the definition

[F̂1, · · · , F̂n] =
∑

σ∈Sn

(−1)σF̂σ1
· · · F̂σn . (2.11)

For even n = 2, 4, · · · , there are interesting identities which reduce the r.h.s. of eq. (2.11)

into products of all commutator pairings [F̂σn , F̂σm ], which qurantee the correct classical
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limit. For odd values n = 3, 5, · · · , this property does not hold. One way to go, is to adopt

an ”odd-even” reduction through the use of fixed operators F̂0 and define:

[F̂1, · · · , F̂2k+1] = [F̂0, F̂1, · · · , F̂2k+1]. (2.12)

In the next section we present explicit constructions of Nambu-Poisson algebras for the

case n = 3, i.e. for three dimensional manifolds and especially for R3, S3, T 3 as well as for

3-d manifolds embeddable in R4 by level set Morse functions.

3. Nambu-Poisson 3-algebras

Nambu-Poisson (NP) algebras have been introduced in ref. [3]. We consider generalized

Nambu 3-brackets on n dimensional manifolds Mn which are defined through a 3-index

antisymmetric tensor field ωijk(x) for x ∈ Mn, i, j, k = 1, 2, · · · , n

{f, g, h} = ωijk(x)∂if∂jg∂kk. (3.1)

We observe that linearity, antisymmetry and the Leibniz rule are satisfied by definition.

We shall impose further the Fundamental Identity on the tensor field ω. For f = xi, g =

xj , h = xk we have the Nambu-Poisson 3-algebras for the coordinates

{xi, xj , xk} = ωijk(x) ; i, j, k = 1, · · · , n . (3.2)

The FI imposed on the coordinate functions is:

{{xi, xj , xk}, xl, xm} = {{xi, xl, xm}, xj , xk}
+{xi, {xj , xl, xm}, xk} + {xi, xj , {xk, xl, xm}}, (3.3)

or by using (3.1-2)

ωplm∂pωijk = ωpjk∂pωilm +ωipk∂pωjlm +ωijk∂pωklm ; p, i, j, k, l,m = 1, 2, · · · , n. (3.4)

For a smooth manifold Mn of dimM = n, which is equiped with a non-degenerate 3-form

ω and satisfies (3.4), it can be shown that this condition is too strong. In fact n must be

restricted to be n = 3 [27]. It is identified as ”the indecomposability” condition for the

Nambu 3-tensor ω. As a further unexpected refinement we can choose locally coordinates

on the 3-manifold M3 so that

ωijk = ǫijk ; i, j, k = 1, 2, 3 (3.5)

is the R3 Nambu form. If M3 possesses a metric with a volume element
√

g then the

typical form of the Nambu tensor takes the form

{xi, xj , xk} =
ǫijk

√
g

. (3.6)

Relation (3.5) is analogous to the existence of local coordinates in symplectic manifolds

with
√

g = 1 [28].

– 5 –
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In order to construct non-trivial examples of 3-algebras we follow the crucial obser-

vation of L.Takhtajan that the Nambu n-brackets in Rn rel.(2.2) create a tower of lower

dimensional brackets of order n− 1, n− 2, · · · on submanifolds which are embedded in Rn.

In order to be more specific, let us consider a smooth 3-Manifold M3 embedded in R4

through a level-set function (Morse function):

h(x1, x2, x3, x4) = c, (3.7)

with c ∈ R fixed. Then by using the FI in R4(n = 4 in rel. 2.9 ) we can check that the

3-bracket on R4

ωijk = ǫijkl∂lh ; i, j, k, l = 1, 2, 3, 4 (3.8)

satisfies the FI rel.(3.4) with n = 4. For example if h is a linear function

h(x1, x2, x3, x4) = αixi ; i = 1, 2, 3, 4, (3.9)

then we obtain the constant Nambu-Poisson(NP) 3-algebras:

{xi, xj , xk} = ǫijklαl ; i, j, k, l = 1, 2, 3, 4. (3.10)

If h is a quadratic function, representing the sphere S3 ⊂ R4

h =
1

2
(xi)2, (3.11)

then we have the linear Nambu-Poisson 3-algebra

{xi, xj , xk}S3 = ǫijklxl ; i, j, k, l = 1, 2, 3, 4. (3.12)

We observe that the most general NP 3-algebra rel.(3.8)

{xi, xj , xk}h = ǫijkl∂lh ; i, j, k, l = 1, 2, 3, 4 , (3.13)

has h as Casimir

{xi, xj , h}h = 0 ; i, j = 12, 3, 4 , (3.14)

and the 3-form ωijk(3.7) is thus degenerate and we bypass Gautheron’s theorem [27]

ωijk∂kh = 0 ; i, j, k = 1, 2, 3, 4. (3.15)

Restriction of the algebra (3.13) on the surface (3.7) gives a non-degenerate 3-form

ωijk, i, j, k = 1, 2, 3 which satisfies the F.I..

Let us now proceed to present three examples of 3-algebras such as R3, S3 and T 3.

Starting out with R3 the 3-algebra of coordinates is:

{xi, xj , xk} = ǫijk ; i, j, k = 1, 2, 3. (3.16)

By using the Leibniz property we can write down the algebra for the monomial basis

xn = xn1

1 xn2

2 xn3

3 ; n1, n2, n3 = 0, 1, 2, · · · , (3.17)

{xn, xm, xl} = n · (m × l)xn+m+l−(1,1,1). (3.18)

– 6 –
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For the 3-torus T 3 the algebra for the periodic function basis:

en = ein·x , (3.19)

with n = (n1, n2, n3) ∈ Z3 and x = (x1, x2, x3) ∈ (0, 2π)3 is given by [18, 20, 21, 23]

{en, em, el} = −in · (m × l)en+m+l ; n,m, l ∈ Z3. (3.20)

For the case of a sphere S3 [20, 21], rel.(3.12) we use polar coordinates to project on

the surface:

e4 = cosθ3

e3 = cosθ2sinθ3

e2 = sinθ1sinθ2sinθ3 (3.21)

e1 = cosθ1sinθ2sinθ3 ,

θ1 ∈ (0, 2π), θ2, θ3 ∈ (0, π)

{ei, ej , ek}S3 =
1

sin2θ3sinθ2
ǫqrs∂θq

ei∂θr
ej∂θs

ek = ǫijklel . (3.22)

By using the Leibniz property 3-algebra on S3 it is possible to write down explicitly, for a

basis of hyperspherical harmonics the corresponding NP S3 3-algebras,

Ya(Ω) = Ynlm(θ3, θ2, θ1) ; a = (nlm), m = −l, · · · , l , l = 0, · · · , n − 1 , (3.23)

{Yα, Yβ, Yγ} = f δ
αβγYδ, (3.24)

where f δ
αβγ can be expressed in terms of 6j symbols of SU(2) (O(4) ∼ SU(2)× SU(2)). For

volume preserving diffeomorphisms of S3 the usual commutators have been worked out

with vector spherical harmonics in ref. [29].

In the rest of this section we shall apply the induction procedure to get a simpler

geometrical meaning for the 3-brackets of the Nambu Dynamics in R3( similarly for T 3

and/or S3 ). In this case evolution eqs. are controlled by two Hamiltonians H1,H2 ∈
C∞(R3) and are given by

dxi

dt
= {H1,H2}i ; i = 1, 2, 3, (3.25)

where the Poisson brackets {H1,H2}i are:

{H1,H2}i = ǫijk∂jH1∂kH2 ; i = 1, 2, 3. (3.26)

Essentially we have three pairs of canonical variables (x1x2), (x2x3), (x3x1) with coupled

evolution eqs. It is possible to bring them into the usual Hamilton’s eq. as follows. We

choose one ”Hamiltonian” say H2 to describe the geometry of a two dimensional phase-

space embedded in R3, H2(x) = C and we write:

dxi

dt
= {xi,H1}H2

; i = 1, 2, 3 , (3.27)

– 7 –
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where we applied the reduction of the Nambu 3-bracket to a Poisson bracket

{f, g}H2
= ǫijk∂jf∂kg∂iH2. (3.28)

By using the Fundamental Identity for n = 3 we obtain

{{f, g}H2
, h}H2

+ {{g, h}H2
, f}H2

+ {{h, f}H2
, g}H2

= 0, (3.29)

the Jacobi identity for {, }H2
.

In order to get a consistent evolution for the coupled coordinates xi, i = 1, 2, 3(eq.

3.26) we must impose at t = 0 the Poisson bracket algebras of the three coordinates

{xi, xj}H2
= ǫijk∂kH2 ; i, j, k = 1, 2, 3. (3.30)

We observe that since H2 is a conserved quantity, the evolution eq. (3.27) preserves (3.30)

in time.

For H1 we choose a Hamiltonian describing the dynamics on the 2-dim. phase-space

H2(x) = c. Had we chosen H1 as the phase-space defining function then:

dxi

dt
= {xi,H2}H1

= −{xi,H1}H2
; i = 1, 2, 3. (3.31)

We get the time reversed evolution if we impose the Poisson algebras

{xi, xj}H1
= ǫijk∂kH1, (3.32)

on the surface H1(x) = c′. The above interpretation of Nambu dynamics will provide the

basic tool for the proposed quantization in section 6.

In the next section we shall connect Nambu dynamics in R3 with flows SDiff(R3)

and the NP 3-algebras with the infinite dimensional Lie algebras of SDiff(R3).

4. Volume preserving diffeomorphisms in the Clebsch-Monge gauge and

Nambu flows in R
3

Since the famous paper by V.Arnold [30] where he proved that the solution of the Euler

eqs. for perfect (incompressible and inviscid ) fluids [31] are the geodesics of the infinite

dimensional volume preserving diffeomorphism (VPD) group, there have been many de-

velopments. In ref. [32] the symplectic structure discovered by Arnold was further studied

and a Hamiltonian formulation of the problem was proposed [33].

Here we will focus in the description of SDiff(R3), in a particular gauge, the Clebsch-

Monge gauge, thus establishing the connection with Nambu Dynamics (flows) in R3. Our

discussion easily extends to three dimensional manifolds with a metric and a smooth Nambu

tensor field.

Let A = C∞(R3) be the space of smooth functions on R3 and G = SDiff(R3) be the

set of smooth maps of R3 7→ R3 with the determinant of the Jacobian at each point of R3

equal to one, i.e.

J(f)(x) = det[∂ifj(x)] = 1 ; i, j = 1, 2, 3. (4.1)

– 8 –
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This set forms a group under composition of functions:

G × G ∋ (f, g) 7→ f ◦ g ∈ G, (4.2)

and the adjoint action of is defined as:

Adg[f ] = f ◦ g−1 ; ∀f, g ∈ G. (4.3)

The elements of the Lie algebra L(G) are:

f i(x) = xi + vi(x) ; i = 1, 2, 3 , (4.4)

with ∂ivi = 0. We will impose conditions at infinity for vi(x):

vi(x)
|x|→∞−→ 0 ; i = 1, 2, 3 , (4.5)

such that the total kinetic energy is finite (density constant):

E =
1

2

∫

d3x v2(x) < +∞. (4.6)

For any infinitesimal element (4.4) we define the flow:

dxi

dt
= vi(x) ; i = 1, 2, 3 , (4.7)

with initial conditions xi
o = xi(t = 0). eq. (4.7) describes the motion of a particle which is

immersed in a fluid of given stationary velocity field at the point xi
o, at t = 0.

We can also define the fundamental representation of G on the space A = C∞(R3):

Tg(α) = α ◦ g−1 α ∈ A. (4.8)

By expanding for infinitesimal g:

gi(x) = xi + vi(x) ; i = 1, 2, 3 , (4.9)

we get the action of generators

X(v)α = −vi∂iα, (4.10)

with a Lie algebra:

[X(u),X(v)] = X(w), (4.11)

and composition law

w = (u · ∂)v − (v · ∂)u = ∂ × (u × v). (4.12)

Rewriting the flow eqs (4.7) via the use of the generators we get

ẋi = −X(v) · xi. (4.13)

We can integrate the equations of motion as:

xi(t) = e−t·X(vo) xi
o, (4.14)

with vo = v(xo).

– 9 –
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After these basic preliminaries we introduce the Clebsch-Monge gauge [33 – 38]. For

every divergenceless vector field (vi(x))i=1,2,3 ∈ R3, with boundary conditions of rel.(4.6)

we can find a vector potential Ai(x) such that vi = ǫijk∂jAk. Given Ai(x) Clebsch and

Monge introduced three scalar potentials α, β, γ ∈ C∞(R3) such that:

Ai = ∂iα + β∂iγ. (4.15)

So finally we get

vi(x) = ǫijk∂jβ∂kγ. (4.16)

The scalar function α(x) becomes the gauge degree of freedom of Ai(x). From the last

relation we see that the intersection of the surfaces β = const., γ = const. define locally

the flow lines. The existence of the scalar potentials β, γ(Clebsch-Monge potentials) is

gurranteed locally if vi(x) is an analytic function in the region of a point say xi = 0, i =

1, 2, 3. Then there exists two integrals of motion of the flow equation:

dxi

vi(x)
= dt ; i = 1, 2, 3 , (4.17)

f(x) , g(x) through which we can determine β and γ. The flows are characterized also by

their vorticity

ωi(x) = ǫijk∂jvk ; i, j, k = 1, 2, 3. (4.18)

In case ωi = 0 the gradient flow vi is:

vi = −∂iΦ ; i = 1, 2, 3, (4.19)

where Φ must be a harmonic function(Laplacian flow).

In this case the surface Φ = const. is orthogonal to the surfaces β = const. and

γ = const. There are computer simulation studies of the flow eqs. for velocity fields

general quadratic polynomials in the coordinates imposing zero radial motion on a sphere

of radius R

n̂ · v ||x|=R= 0. (4.20)

For various ranges of the polynomial coefficients one recovers chaotic flow as well as stan-

dard forms of flow modes [39].

Going back to rel (4.16) the generators of the flow , in terms of the Clebsch-Monge

potentials, become

X(β, γ) ≡ X(∂β × ∂γ) = −ǫijk∂jβ∂kγ∂i, (4.21)

The action of X(β, γ) on a smooth function α ∈ C∞(R3) is:

X(β, γ)α = −{α, β, γ}, (4.22)

the Nambu bracket of α, β, γ. The flow eq. (4.7) becomes

ẋi = {xi, β, γ} ; i = 1, 2, 3 , (4.23)
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and so the Clebsch-Monge potentials of the flow are just the two Hamiltonians H1 =

β, H2 = γ of the Nambu dynamics. We conclude that the flow equations of incompressible

fluids can be described by Nambu dynamics and vice versa. By considering now the

commutation relations (4.11-4.12) in the Clebsch-Monge gauge we obtain:

[X(β1, γ1),X(β2, γ2)] = X({β1, γ1, β2}, γ2) + X(β2, {β1, γ1, γ2}). (4.24)

Acting both sides of the CR(4.24), on functions α ∈ C∞(R3) we get the FI:

{β1, γ1, {β2, γ2, α}} − {β1, γ1, {β2, γ2, α}} = {{β1, γ1, β2}, γ2, α} + {β2, {β1, γ1, γ2}, α}.
(4.25)

We observe that all the information of the CR of SDiff(R3) is contained in the NP 3-

algebra for a basis of functions in R3. Indeed if (fα)α∈S is a basis with index set S, then if

we know the structure constants of the 3-algebra , f δ
αβγ

{fα, fβ, fγ} = f δ
αβγfδ; α, β, γ, δ ∈ S, (4.26)

then we can construct the Lie algebra structure constants for the generators

X(α,β) = −{fα, fβ, } ; α, β ∈ S (4.27)

and commutation relations

[X(α1,β1),X(α2,β2)] = f
γ
α1β1α2

X(γ,β2) + f
γ
α1β1β2

X(α2,γ). (4.28)

Since later we shall need the case of linear or quadratic Hamiltonians, we give explicitly

the construction of the corresponding NP 3-algebras. If both Hamiltonians are linear , i.e.

H1 = a · x, H2 = b · x, a, b ∈ R3 then the flows

X(a, b) = ǫijk∂jH1∂
kH2∂

i = (a × b)i∂i ; i, j, k = 1, 2, 3 , (4.29)

represent translations along the direction a × b(constant laminar flow).

If one is linear and the other is quadratic such as H1 = ax , H2 = 1
2xBx with α ∈ R3

and B a real symmetric 3 × 3 matrix then:

X(α,B) = ǫijkajBklxl∂i = (Ax)i∂i ; i, j, k = 1, 2, 3 , (4.30)

with

Aij = ǫiklakBlj ; i, j, k, l = 1, 2, 3. (4.31)

It corresponds to a linear flow with an axis of symmetry a ∈ R3. Finally if both Hamil-

tonians are quadratic: H1 = 1
2xBx , H2 = 1

2xCx with B,C real symmetric 3 × 3 matrices

(Quadratic flow):

X(B,C) = ǫijkBjlCkmxlxm∂i = Ai
jkx

jxk∂i (4.32)

Ai
jk = ǫilmBljCmk. (4.33)

We denote by LC(M) , LL(M) , LQ(M) the constant, linear and quadratic flows respec-

tively. It is easy to check that the commutator of elements of LQ(M) generate cubic
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flows. Hence only the sets LC(M) , LL(M) close by themselves under commutation. The

associated commutation relations are:

[X(a, b),X(c, d)] = 0, (4.34)

[X(a, b),X(c,B)] = X((c × B) · (a × b)), (4.35)

and

[X(a,A),X(b,B)] = X(b,B · (a × A)) − X(a,A · (b × B)), (4.36)

where

(a × A)ij = ǫilkalAkj ; i, j, k, l = 1, 2, 3. (4.37)

We proceed now to write down the CR of SDiff(R3) in the basis of plane waves

from which we can generate the CR of any other basis of C∞(R3). We employ linearity

and Fourier transforms in order to consider the algebra of the exponential function eα =

eiα·x, α ∈ R3( If α ∈ Z3 we get the torus T 3 basis). The generators on this basis are:

X(α,β) = eα+β(α × β) · ∂ ; α, β ∈ R3 , (4.38)

and we obtain:

{eα, eβ , eγ} = −X(α,β)γ = −i(α × β) · γ eα+β+γ , (4.39)

so that

f ǫ
αβγ = (−i)(α × β) · γδǫ−α−β−γ , (4.40)

for α, β, γ, ǫ ∈ R3. The Lie algebra of SDiff(R3) on this basis becomes:

[X(α1,β1),X(α2,β2)] = i(α1 × β1) · α2X(α1+β1+α2,β2) + i(α1 × β1) · β2X(α2,α1+β1+β2). (4.41)

We close this section by the construction of the SDiff(M3) Lie algebra for a three

dimensional manifold M3 which can be embedded in R4 through a level set function

h(x) = const., ∀x ∈ R4. For divergence free flows in R4 ,

∂ava = 0 ; a = 1, 2, 3, 4, (4.42)

there exist three Clebsch-Monge potentials α, β, γ such that:

va = ǫabcd∂bα∂cβ∂dγ ; a, b, c, d = 1, 2, 3, 4. (4.43)

In order to define the incompressible flows on M3 we consider the subset of flows on R4

with γ = h. Then we set for the generators of the flow:

Xh(α, β) = ǫabcd∂bα∂cβ∂dh∂a ; a, b, c, d = 1, · · · , 4. (4.44)

For fixed h this defines a Lie subalgebra of SDiff(R4) since Xh(α, β) leaves invariant the

manifold M3 ⊂ R4 that is the flow is parallel to M3 for points x of M3. The resulting

subalgebra is:

[Xh(α1, β1),Xh(α2, β2)] = Xh({α1, β1, α2}h, β2) + Xh(α2, {α1, β1, β2}h), (4.45)
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with

{α, β, γ}h = ǫabcd∂bα∂cβ∂dγ∂ah, (4.46)

the induced 3-bracket from R4. Projecting on the manifold M3 we get the CR of

SDiff(M3). Projection in our present context implies the restriction of all functions

α1, α2, β1, β2 ∈ C∞(R4) on the surface h(x) = const.. Since the generators Xh(α, β) pos-

sess the Leibniz property with respect to α1, α2, β ∈ C∞(R4)

Xh(α1, α2, β) = α1Xh(α2, β) + α2Xh(α1, β), (4.47)

it is enough to consider the CR only on the coordinate functions xa , α = 1, 2, 3, 4

[Xh(xa, xb),Xh(xc, xd)] = Xh({xa, xb, xc}h, xd) + Xh(xc, {xa, xb, xd}h, (4.48)

where a, b, c, d = 1, 2, 3, 4. Using the relation {xa, xb, xc} = ǫabcd∂dh we obtain:

[Xh(xa, xb),Xh(xc, xd)] = ǫabclXh(∂lh, xd) + ǫabdlXh(xc, ∂lh). (4.49)

If it is possible to solve parametrically the level-set eq. with smooth coordinate functions

on M3:

xa = xa(ξ1, ξ2, ξ3) ; a = 1, 2, 3, 4 , (4.50)

we obtain the Lie algebra of SDiff(M3) from eq. (4.41) for the coordinate function on

M3. For example, if h is a quadratic surface in R4:

h =
1

2
xaMabxb ; a, b = 1, 2, 3, 4 , (4.51)

where Mab is a symmetric 4 × 4 real matrix. For a, b, c, d, l, k = 1, 2, 3, 4 we obtain:

[Xh(xa, xb),Xh(xc, xd)] = ǫabclM lkXh(xk, xd) + ǫabdlM lkXh(xk, xd). (4.52)

If M is non-degenerate (eigenvalues equal to plus or minus one eigenvalues by diagonalizing

and rescaling) we obtain the Lie algebra of the groups SO(p, q) p + q = 4, p = 1, 2, 3, 4

for the 3-manifolds Mp,q
3 .

It becomes obvious from the previous observations that Nambu dynamics can be repre-

sented as incompressible flows in a 3-d manifold M3 and the NP 3-algebras are just the Lie

algebras of volume preserving diffeomorphisms of M3. It is possible to restrict further the

Nambu flows to the geodesics of SDiff(M3) so that the flows are solutions of the perfect

fluid Euler equations. In case we need higher dimensional embedding of M3 to a Rn with

n = 2 · 3 − 1 = 5 in general, we can extend our method to Nambu-Poisson 5-brackets and

restrict with appropriate level set functions h1, h2 to the manifold M3 ⊆ R5.

5. Vortices in the Clebsch-Monge gauge and their topology in R
3

Flows contain topological objects, the 3-d vortices and their interaction is governed by

simple laws discovered by H.von Helmholtz in 1858, Clebsch,Lord Kelvin, Poincare and
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many others [40, 41]. The topology of the vortex configurations in perfect barotropic

fluids, is captured by the helicity [42]

I =
1

(8π)2

∫

d3xvi(x)ωi(x), (5.1)

where the vorticity ωi is defined by:

ωi(x) = ǫijk∂jvk ; i, j, k = 1, 2, 3, (5.2)

which is also divergenceless

∂iωi = 0. (5.3)

The helicity is a topological invariant of the flow and it is conserved in Euler inviscid

flows. For applications in atmospheric fluid dynamics and condensed matter physics see,

for instance, [43] and [44] respectively.

It is possible to translate the divergenceless condition of the flow (vi(x))i=1,2,3 to an

algebraic constraint by introducing the nonlinear O(3) unit vector field (ni(x))i=1,2,3 such

that nini = 1, (n ∈ S2) [45, 46]. This is defined as follows (A is a dimensionful constant):

ωi = Aǫijkǫpqrnp∂jn
q∂kn

r ; i, j, k, p, q, r = 1, 2, 3, (5.4)

or vectorially

ωi = A ǫijkn · (∂jn × ∂kn) ; i, j, k = 1, 2, 3. (5.5)

It is easy to check that

∂iωi = det[∂inj] = 0. (5.6)

since (ni)i=1,2,3 are functionally dependent through nini = 1. The asymptotic condition

(4.5) gurrantees that

ni |x|→∞−→ ni
o ∈ S2, (5.7)

the vector n approaches a constant vector no as |x| goes to infinity. As a result we have a

smooth map from R3 ∼ S3 to S2. The Homotopy group of these maps is Π3(S
2) = Z and

the integer

Hopf invariant of the mapping n : S3 → S2 is related to the helicity as:

I = NA2. (5.8)

There is a nice geometrical interpretation of the Hopf integer number N in the flow picture

given by (ni(x))i=1,2,3.

Consider two fixed vectors n1, n2 ∈ S2. For a particular field n(x) ∈ S2 let us follow

the two vortex lines n(x) = ni, i = 1, 2 for x ∈ R3. Their linking number is precisely N.

The vortex lines either go to infinity or must be closed. If they are open and finite then

N = 0. In what follows we will discuss a particular parametrization of the incompressible

flows which results into a precise definition of the Nambu flows and brackets in the presence
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of vorices. Given the topology of an incompressible flow it is possible to find locally a vector

potential (Ai)i=1,2,3(x):

ωi = ǫijk∂jAk ; i, j, k = 1, 2, 3. (5.9)

As discussed before it is always possible to represent an arbitrary vector field Ai(~x) through

three scalar potentials α, β, γ

Ai = ∂iν + µ∂iλ. (5.10)

The potential ν is the gauge freedom of rel.(5.11) and µ, λ are the Clebsch-Monge

potentials, corresponding to the vorticity ωi.

We note here the important difference from the usual treatment of Euler flows [32]

where the Clebsch potential characterizes the vorticity ωi = ǫijk∂jλ∂kµ rather than the

velocity flow vi = ǫijk∂jβ∂kγ which is our case of interest. In [33] λ, µ are canonical field

variables for Euler flows.

If there is a nontrivial topology in the flow (Hopf number 6= 0) we can determine

β, γ by patching together the solution of the flow equation in different regions of R3. The

Clebsch-Monge potential, β or γ are not single valued functions but rather complicated

non-local functions of λ, µ

The flow is expressed in terms of β and γ and correspond to Nambu flows with Hamil-

tonians H1 = β,H2 = γ:

vi = ǫijk∂jβ∂kγ ; i, j, k = 1, 2, 3. (5.11)

It can be shown that if β and γ are single valued with the asymptotic conditions for the

velocity field (4.5) then the helicity N = 0. The geometrical intersection of the level surfaces

β = c1, γ = c2 ∀ c1, c2 ∈ R, determines the flow lines of the velocity field ~v, implies that

in the case of a non-trivial topology the surfaces β, γ must interwind each other. Hence

it is natural that they are multivalued functions. This statement can be shown explicitly

in terms of the unit vector (ni)i=1,2,3 introduced previously. We consider its polar angles

Θ(x),Φ(x)

n = (cosΦsinΘ, sinΦcosΘ, cosΘ). (5.12)

By calculating ωi we find:

ωi = A ǫijk ∂jcosΘ ∂kΦ ; i, j, k = 1, 2, 3. (5.13)

We see that we can define (set units A=1):

λ = cosΘ, (5.14)

and

µ = Φ, (5.15)

We see the necessity of multivaluedness for λ, µ and therefore of β and γ. The target

manifold of β and γ at every space point, in general, may be a compact Riemann surface of

arbitrary genus. The symplectic structure of this space leads to the non-uniqueness of β and
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γ in representation of the velocity field. Any area preserving transformation of β and γ on

this surface leads to the same vi. Representing the vorticity ω by Clebsch-Monge potentials

λ, µ the associated symplectic structure is precisely the Arnold-Marden-Weinstein structure

on the space of functionals of vorticity [32, 46].

6. The quantization of Nambu dynamics in 3-d phase space

In section 2 we stressed the importance of the properties of the Nambu 3-bracket, such

as a) Leibniz , and b) the Fundamental Identity(FI) for the consistency of the classical

evolution eqs. of Nambu mechanics(NM) in 3-d manifolds. Focusing our discussion on R3

(although it is easily generalizable to 3-manifolds embeddable in R4) our interpretation

of section 3, is that we choose among the two Hamiltonians H1 or H2
1 the one which

defines the 2-d phase space geometry embedded in R3, say H2(x) = C. For various initial

conditions we obtain a foliation of R3 into two dim. phase spaces all possessing the same

Poisson algebra of coordinates at t = 0

{Xi,Xj}H2
= ǫijk∂kH2 ; i, j, k = 1, 2, 3. (6.1)

The second Hamiltonian H1 defines the dynamics of the motion on the H2 phase-space:

Ẋi = {Xi,H1}H2
; i = 1, 2, 3. (6.2)

Since H2 is conserved, for all later times the phase space coordinates satisfy the

same algebra:

{Xi(t, x0),X
j(t, x0)} = ǫijk∂kH2. (6.3)

We propose an almost obvious quantization rule for NM as follows.

We, firstly, define an associative quantization of the algebra (6.1) promoting the phase

space coordinates Xi at t = 0 to hermitian operators with commutation relations (CR):

[Xi,Xj ] = XiXj − XjXi = ı~ǫijkP k(x) ; i, j, k = 1, 2, 3, (6.4)

having as a classical limit

lim
1

i~
[Xi,Xj ]

~→0
= {Xi,Xj}H2

, (6.5)

or

lim P k(x)
~→0
= ∂kH2(x). (6.6)

If H2 is a quadratic function of the canonical phase space coordinates there is no

ordering problem (linear Lie-algebras). For H2 cubic or higher (non-linear Lie algebras)

there is no unique way to quantize. Nevertheless the polynomials P k(x) , k = 1, 2, 3 must

obey the following constraints:

a) They must be hermitian operators (e.g. by Weyl ordering of ∂kH2)

1In this work we restrict ourselves to the space of polynomials of coordinates for the Hamiltonians

H1, H2.
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b) They must satisfy the Diamond Lemma [47]. The algebra (6.4) must have a Universal

envelopping algebra U , for which any monomials of Xi, (Xi)m1(Xj)m2(Xk)m3 can be

brought using the polynomial commutation relations to a prechosen order such as for

example (X1)n1(X2)n2(X3)n3 .

This property is necessary for the existence of a basis of ordered monomials of U as

well as for comparisons of l.h.s. and r.h.s. respectively of various identities. This is

analogous to the Poincare-Birkoff theorem, for linear Lie algebras.

c) They must obey the Jacobi identity

[X1, P 1] + [X2, P 2] + [X3, P 3] = 0, (6.7)

and finally

d) There must exist a Casimir for the algebra (6.4) H2(~)

[Xi,H2(~)] = 0, (6.8)

such that the Classical limit exists and moreover

limH2(~)
~→0
= H2, (6.9)

where H2 is the classical Casimir.

Non-linear Lie algebras have been discussed as deformations of linear Lie algebras (Quan-

tum Groups, W-algebras , polynomial Lie algebras) [48 – 50].

The cohomological obstruction for ⋆-quantization of polynomial Poisson algebras has

been studied in ref. [51]. Recently in ref. [52] a framework has been proposed for matrix

deformations, corresponding to non-linear Poisson algebras for compact surfaces in R3 of

any genus. Explicit constructions, as far as we know, have been given only for deformed

spheres g = 0 and tori g = 1.

Once we have quantized the algebra of phase space coordinates at t = 0 with Casimir

H2(~) we proceed to introduce the following quantum Nambu-Heisenberg eqs.:

ı~
dXi

dt
= [Xi,H1]H2(~) ; i = 1, 2, 3, (6.10)

where the commutator on the r.h.s. has to be evaluated with the quantum algebra (6.4).

We observe that since the commutator respects the Leibniz property for any observable F

which is not explicitly dependent on time we obtain the quantum Liouville eq.:

ı~
dF (X)

dt
= [F,H1]H2(~). (6.11)

In particular H1 and H2(~) are conserved and thus Xi satisfy the same algebra for all times:

[Xi(t, x0),X
j(t, x0)] = ı~ǫijkP k(X) ; i, j, k = 1, 2, 3. (6.12)
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We can formally solve eq. (6.10) by using the adjoint operator adX

adX [Y ] = [Y,X], (6.13)

F (X) = e−
ı
~

tadH1 F (X0) = e−
ı
~

tH1F (X0)e
ı
~
tH1 . (6.14)

We end this section by providing three illustrative examples for our construction.

1) An electric charge in a homogeneous magnetic field. The classical phase space is

defined by the H2 function:

H2 =
e

m2c
~v · ~B, (6.15)

and so the Nambu-Poisson algebra of the phase-space coordinates vi is according to

rel.(6.1),

{vi, vj} =
e

m2c
ǫijkBk ; i, j, k = 1, 2, 3. (6.16)

The phase space is a plane transverse to B embedded in R3. The dynamics is de-

fined through:

H1 =
1

2
mv2, (6.17)

and the Nambu eqs:

v̇i =
e

mc
ǫijkvjBk, (6.18)

produce the correct physical eqs. of motion. For the quantum case we have the

following two Hamiltonian operators:

Ĥ2 =
e

m2c
v̂ · B, (6.19)

and

Ĥ1 =
1

2
mv̂2. (6.20)

For the algebra of coordinates we get a Heisenberg Lie algebra:

[v̂i, v̂j ] = ı~
e

m2c
ǫijkBk ; i, j, k = 1, 2, 3. (6.21)

Ĥ2 is the Casimir of the Heisenberg algebra which defines the quantum plane foliat-

ing R3.

The Nambu-Heisenberg eqs. of motion are:

dv̂i

dt
=

e

mc
ǫijkv̂jBk = − ı

~
[v̂i, Ĥ1]Ĥ2

. (6.22)

These are the standard QM eqs. for the Landau problem [53].

2) The Euler Top [1] At the classical level we choose

H2 =
1

2
li li. (6.23)
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The corresponding phase space is S2 which provides a spherical foliation of R3 with

varying radius
√

2H2 for various initial conditions li0 with Poisson algebra SO(3)

{li, lj} = ǫijk lk ; i, j, k = 1, 2, 3. (6.24)

The second Hamiltonian is the conserved energy

H1 =
1

2

(

l21
I1

+
l22
I2

+
l23
I3

)

. (6.25)

The classical eqs. of motion are l̇i = ǫijk ∂jH1 ∂kH2 or

l̇1 =

(

1

I2
− 1

I3

)

l2 l3

l̇2 =

(

1

I3
− 1

I1

)

l3 l1 (6.26)

l̇3 =

(

1

I1
− 1

I2

)

l1 l2.

In the quantum case

Ĥ2 =
1

2
l̂i l̂i ; i = 1, 2, 3. (6.27)

The phase-space Lie algebra is linear (SO(3))

[l̂i, l̂j ] = ı~ ǫijk l̂k; i, j, k = 1, 2, 3. (6.28)

The Energy operator is H1

Ĥ1 =
1

2

(

l̂21
I1

+
l̂22
I2

+
l̂23
I3

)

. (6.29)

The quantum Nambu-Heisenberg eqs. of motion are:

ı~
dl̂i

dt
= [l̂i,H1]H2

; i = 1, 2, 3, (6.30)

or component wise

dl̂1

dt
=

1

2

(

1

I2
− 1

I3

)

(l̂2 l̂3 + l̂3l̂2)

dl̂2

dt
=

1

2

(

1

I3
− 1

I1

)

(l̂3 l̂1 + l̂1l̂3) (6.31)

dl̂3

dt
=

1

2

(

1

I1
− 1

I2

)

(l̂1 l̂2 + l̂2l̂1).

These are the correct eqs. of motion for the quantum top [53]. It is known that the

prescription of quantization by Nambu [1] for the quantum triple product fails by a

multiplicative factor on the r.h.s. of eq. (6.31) which is the value of the SO(3) Casimir
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3) Single Spin Magnetic Field Interaction This example is similar in spirit to the first

one describing the motion of a quantum particle of magnetic moment µ and quantum

spin s

M i = µŜi ; i = 1, 2, 3 , (6.32)

with Hamiltonians H2 and H1

Ĥ2 =
1

2
ŜiŜi

Ĥ1 = −µBiŜi ; i = 1, 2, 3. (6.33)

The phase space algebra is SU(2)

[Ŝi, Ŝj ] = ı~ ǫijk Ŝk (6.34)

with the corresponding eqs. of motion being:

ı~
dŜi

dt
= [Ŝi, Ĥ1]Ĥ2

, (6.35)

or equivalently
dŜi

dt
= −µǫijkBjŜk ; i, j, k = 1, 2, 3 , (6.36)

which again are the expected ones.

We note that in these three examples and for general quadratic or linear polynomial

Hamiltonians Ĥ1, Ĥ2 it is easy to check that

[X̂i, Ĥ1]Ĥ2
= −[X̂i, Ĥ2]Ĥ1

. (6.37)

Note that the exchange symmetry Ĥ1 ↔ Ĥ2 between the two Hamiltonians is equiv-

alent to time reversal symmetry t → −t. More generally this duality symmetry is

valid for any element g ∈ SL(2, R)

g =

(

α β

γ δ

)

; det g = 1, α, β, γ, δ ∈ R , (6.38)

which produces the transformation

(Ĥ1, Ĥ2) → (Ĥ ′
1, Ĥ

′
2) = (Ĥ1, Ĥ2) · g. (6.39)

For general quadratic Hamiltonians it leaves invariant the equations of motion

ı~
dX̂i

dt
= [X̂i, Ĥ1]Ĥ2

; i = 1, 2, 3. (6.40)

The general setting we have developed here is appropriate to the quantization of

classical flow eqs. for perfect fluids (see discussion in section 5). For many years this
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is a very active field starting with Landau (1941) [54 – 56]. He formulated Quantum

Hydrodynamics in the Eulerian framework by quantizing the density ρ and the current

J i, i = 1, 2, 3 starting from basic commutation relations of flow coordinates for the

constituent particles ( Lagrangian formulation). The physical phenomenon at hand

was superfluidity and more specifically He4 [57]. In the last two decades, there

has been an intense interest for quantum fluids (BEC) [58] and strongly correlated

electron systems(quantum Hall effect and high temperature supercontuctivity) [59].

On the other hand for studies related to non-commutative or fuzzy fluids see ref. [37,

60]. In addition very recently there has been a very fruitful connection of AdS5 black

hole geometry with the quark-gluon fluid thermodynamics on the boundary [61].

Having established the precise physical setting of our proposal we proceed to discuss in

the next section the quantization of the Nambu-Poisson 3-algebras (3-brackets). According

to our approach it must be consistent with the quantum Nambu-Heisenberg equations of

motion. Few of the works in the literature have made a consistent connection of the

quantization of the Nambu 3-bracket with Quantum Nambu Dynamics.

7. Nambu-Lie 3-algebras and the quantization of the 3-bracket

Nambu-Lie 3-algebras have been previously discussed ref. [1 – 3, 62, 63], and more recently

as metric linear 3-algebras [64, 65]. They are defined as algebras with a finite set of

generators T a, a = 1, 2, · · · , n and a 3-commutator with the following properties:

1) Antisymmetry

[tσ(a), tσ(b), tσ(c)] = (−1)σ [ta, tb, tc] ; a, b, c = 1, · · · , n, (7.1)

for every permutation of three objects σ ∈ S3

2) Linearity

[λat
a, tb, tc] = λa[t

a, tb, tc] ; λa ∈ C, a, b, c = 1, · · · , n, (7.2)

3) Fundamental Identity(FI)

[[ta, tb, tc], td, te] = [[ta, td, te], tb, tc] + [ta, [tb, td], te], tc] (7.3)

+[ta, tb, [tc, td, te]] ; ∀a, b, c, d, e = 1, 2, · · · , n. (7.4)

The last property can be expressed in a different way. If we define the adjoint

action operator:

La,b ≡ [ta, tb, ] ; ∀ a, b = 1, · · · , n. (7.5)

It acts like a derivation on the 3-commutator:

Ld,e[t
a, tb, tc] = [Ld,et

a, tb, tc] + [ta, Ld,et
b, tc] + [ta, tb, Ld,et

c]. (7.6)

It generalizes the usual action of the adjoint operation of a Lie algebra or equivalently

it is an extension of the Jacobi identity. A question of consistency is in order, when

the Leibniz property is imposed in addition to the previous ones:
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4) Leibniz

[ta, tb, tc, td] = ta[tb, tc, td] + [ta, tc, td]tb. (7.7)

It is possible to construct 3-algebras which do not satisfy the FI but they do instead

satisfy the Leibniz property (Leibniz 3-algebras) [63]. The latter is necessary in order

to extract from the 3-commutator the generators of the algebra the 3-commutator of

the polynomials in the generator, in other words the full structure of the enveloping

algebra U .

The final property is

5) The Closure relation

[ta, tb, tc] = ifabc
d td ; a, b, c, d = 1, · · · , n. (7.8)

To write down a Lagrangian one also needs an inner product trace form which raises

and lowers indices on the algebra Tr(tatb) = hab. These algebras are called ”Metric

Lie 3-algebras”.

We name the algebras which satisfy properties 1)-5), as ”Linear Nambu-Lie 3-algebras”

in order to distinquish their structure from more general Non-linear Nambu- Lie 3-algebras

[ta, tb, tc] = ifabc
d P d(t), (7.9)

where P d(t) , d = 1, · · · , n are polynomials in the generators ta. The FI imposes constraints

on the fabc
d and in the more general case on the Polynomials P d.

In the BL theory [6, 7] the Leibniz property is ignored because it is not necessary

for the consistency of the theory. The Leibniz property itself assumes the existence of a

product between the generators which can be associative or non-associative although some

properties are indirectly assumed at the level of traces. In the literature there are proposals

for the 3-commutator which start directly from a triple product between the generators.

For cubic matrix algebras [23, 24] as well as for non-associative 3-algebras one starts off

from the associator

< ta, tb, tc >= ta(tbtc) − (tatb)tc, (7.10)

The 3-commutator bracket is then defined to be:

[ta, tb, tc] =
∑

σ∈S3

(−1)σ < tσ(a), tσ(b), tσ(c) > . (7.11)

The well known non-associative algebra of octonions (7-imaginary units) ei, i = 1, · · · , n =

7 satisfy [66, 67]

eiej = −δij + Ψijkek i, j, k = 1, · · · , 7
e0ei = eie0 i = 1, · · · , 7 (7.12)

e2
0 = 1. (7.13)
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The associator is given by

< ei, ej , ek >= ei(ejek) − (eiej)ek = ϕijklel i, j, k, l = 1, · · · , 7, (7.14)

where Ψijk is the completely antisymmetric tensor of octonionic multiplication table with

values 1 for [(123), (246), (435), (367), (651), (572), (714)] and zero otherwise.The dual

tensor ϕijkl is defined as

ϕijkl = ǫijklmnpΨmnp ; i, j, k, l,m, n, p = 1, · · · , 7. (7.15)

It is completely antisymmetric with values 1 for (1245), (2671), (3526),

(4273), (5764), (6431), (7531) and zero otherwise. The seven octonionic units form a

linear 3-algebra which is given by

[ei, ej , ek] = 7 ϕijklel; i, j, k, l = 1, · · · , 7, (7.16)

but it does not satisfy the FI and Leibniz properties. We would like to notice here the

relation of octonions with the quantum mechanical self-dual membranes (instantons), in the

light-cone gauge, embedded in 7 dimensions [68, 69]. For associative linear NL 3-algebras

the triple commutator is

[ta, tb, tc] =
∑

σ∈S3

(−1)σtσ(a), tσ(b), tσ(c). (7.17)

In order to define the triple commutator, one could also choose an element Γ,Γ2 = I

such that

[Γ, ta]+ = 0. (7.18)

The 3-commutator is then defined through the 4-commutator [16, 70]

[Xa,Xb,Xc,Xd] =
∑

σ∈S4

(−1)σXσ(a)Xσ(b)Xσ(c)Xσ(d), (7.19)

as:

[ta, tb, tc] ≡ [ta, tb, tc,Γ]. (7.20)

It has been proved that the closure relation (7.8) for positive definite metric 3-algebras has

solutions only for n = 4, the A4 algebra or direct sums with abelian triple algebras [64].

The A4 algebra has as generators [6]

ta = γa ; a = 1, 2, 3, 4, (7.21)

and Γ = γ5, (two SU(2) algebras of positive and negative chirality):

[ta, tb, tc] = iǫabcdtd ; a, b, c, d = 1, 2, 3, 4. (7.22)

In general the definitions of the triple commutator (7.10, 7.11, 7.17, 7.19 , 7.20) do not

satisfy the FI and Leibniz properties.

As has been emphasized in the previous sections, our approach is to consider Nambu-

Lie 3-algebras which allow for the consistent quantization of Nambu classical dynamics
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in 3-d phase-space manifolds M3. This, in turn means (see section 3-4), that we should

quantize consistently the Lie algebras of volume preserving diffeomorphisms in the Clebsch-

Monge(CM) gauge. One way would be to quantize the CM potentials as we do in quantum

field theory, by using familiar symplectic structures [32, 30]. A second way would be, to

construct topological σ-models defining the ∗ deformation of the Poisson algebra of smooth

functions on M3 [71].

Our approach is to consider Matrix deformations of the algebras of coordinates for every

surface defined by a level set Morse function, which is the Casimir of the corresponding

Poisson algebra( see section three). In accord with our philosophy of section5 we have

to be consistent with the Nambu-Heisenberg equations of motion. If we choose the two

Hamiltonians Ĥ1, Ĥ2 then the time evolution equations are

ı~
dX̂i

dt
= [X̂i, Ĥ1]Ĥ2

. (7.23)

We define the Nambu quantum 3-bracket as the 3-commutator

[X̂i, Ĥ1, Ĥ2] = [X̂i, Ĥ1]Ĥ2
. (7.24)

Any polynomial Hermitian operator observable F̂ (x̂) satisfies the Quantum Liouville time

evolution equation generically due to our ansatz

ı~
dF̂

dt
= [F̂ , Ĥ1]Ĥ2

. (7.25)

It also follows from (7.22) that more generally we have

[F̂ , Ĥ1, Ĥ2] = [F̂ , Ĥ1]Ĥ2
. (7.26)

The triple commutator just defined, if used for any three Hermitian operators F, G, H (we

omit hats from now on):

[F,G,H] = [F,G]H , (7.27)

obeys as before the following properties: a) Linearity b) Antisymmetry c)Leibniz in

the first two arguments. If the additional requirement is imposed, namely that

[F,G]H = −[F,H]G, (7.28)

all of the above properties get satisfied as well in all three arguments. By fixing the phase

space to be R3 we will examine rel.(7.28) for the case that the three operators F,G,H are

linear or quadratic in the coordinates xi.

1) Linear case

F = aixi, G = bjxj, H = ckxk ; a, b, c ∈ R3, i, j, k = 1, 2, 3. (7.29)

According to our definitions the algebra of coordinates is:

[xi, xj]H=ckxk = ı~ǫijkck. (7.30)
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This is the non-commutative 3-torus T 3
c [72]. Since the Casimir H defines a quantum

plane (the usual quantum mechanical phase-space) for every value λ of an irrep:

λ ∈ R

H = ckxk = λ · I. (7.31)

The non-commutative 3-torus is foliated by the λ-planes(2-tori) [73]. We find for the

commutator [F,G]H
[aixi, bjxj]ckxk = ı~a · (b × c). (7.32)

Hence rel.(7.28) holds true, as the r.h.s. of (7.32) is antisymmetric in b ↔ c

2) F,G Linear , H Quadratic

H =
1

2
xkMklxl ; k, l = 1, 2, 3, (7.33)

where M is a real symmetric matrix. The algebra of coordinates is a 3-generator

linear Lie algebra. Depending on the eigenvalues of M we obtain all cases (SU(2) ,

SU(1,1), etc.).

[xi, xj ]H = ı~ǫijkMklxl. (7.34)

Foliating R3 by fuzzy quadratic surfaces the l.h.s. of rel.(7.28) reads

[aixi, bjxj]H = ı~ǫijkai bj Mkl xl. (7.35)

The r.h.s. is evaluated with Casimir G = bjxj

[aixi,
1

2
xkMklxl]G = −ı~ǫijkaibjMklxl. (7.36)

So (7.28) is satisfied.

3) G , H both Quadratic

G =
1

2
xjQjmxm ; H =

1

2
xkMklxl, (7.37)

with Q , M both real symmetric matrices. By Leibniz’s rule we consider the rel.(7.28)

in the form

[xi, G]H = −[xi,H]G, i = 1, 2, 3. (7.38)

We demonstrate its validity by evaluating separately both sides. Its l.h.s. gives:

[xi,
1

2
xjQjmxm]H = ı~ǫijk(QjlMkm + QjmMkl)xlxm. (7.39)

By exchanging Q ↔ M and j ↔ k we similarly evaluate the r.h.s. . and get:

[xi,
1

2
xkMklxl]G = ı~ǫijk(MklQjm + MkmQjl)xlxm. (7.40)

This checks the validity of (7.38). In effect this implies that it holds also true

[F,G]H = −[F,H]G, (7.41)
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for the cases G and H being either linear or quadratic with F being any polynomial.

To go one step further we have to consider cases where H is cubic and G is either

linear or quadratic and so on. These cases require the construction of non-Linear Lie

algebras with cubic Casimir or quadratic right hand side (quadratic Lie algebras).

We defer these considerations to a future work.

The main point of this section is to examine the validity of the fundamental identity

(FI) under the definition (7.27). This is:

[[F,G]H ,K]L = [[F,K]L, G]H + [F, [G,K]L]H + [F,G][H,K]L . (7.42)

We shall check below the above relation, at the level of linear Lie-algebras. We must

consider the cases where H and L as well as [H,K]L are quadratic polynomials (for linear

it is trivial) and this implies that K must be linear.

H =
1

2
xkMklxl, L =

1

2
xjQjmxm,

K = xr, F = xp, G = xq, ; k, l, j,m, p, q, r = 1, 2, 3, (7.43)

where M , Q are real symmetric 3 × 3 matrices. The FI becomes

[[xp, xq]H , xr]L = [[xp, xr]L, xq]H + [xp, [xq, xr]L]H + [xp, xq][H,xr]L . (7.44)

The Casimirs H , L being quadratic give rise to linear Lie-algebras,

[xp, xq]H = i~ǫpqkMklxl, [xp, xr]L = ı~ǫprjQjlxl ; p, q, r, j, l = 1, 2, 3, (7.45)

while the third Casimir [H,xr]L has to be evaluated

[H,xr]L =
1

2
Mkl [xkxl, xr]L =

ı~

2
MklQjm(ǫlrjxkxm + ǫkrjxmxl). (7.46)

There are three terms of similar nature in (7.44), the l.h.s. and the first two in the r.h.s. ,

which we label as r.h.s. 1 and r.h.s. 2. They are given as follows:

l.h.s. = [[xp, xq]H , xr]L = −~
2ǫpqkǫlrjMklQjmxm, (7.47)

r.h.s. 1 = [[xp, xr]L, xq]H = −~
2ǫprjǫmqkQjmMklxl, (7.48)

r.h.s. 2 = [xp, [xq, xr]L]H = −~
2ǫqrjǫpmkQjmMklxl. (7.49)

In order to evaluate the third term of the r.h.s. , r.h.s. 3, we rewrite the Casimir rel.(7.46)

in a convenient form:

[H,xr]L = ı~
1

2
xmGml

r xl ; r,m, l = 1, 2, 3, (7.50)

where Gml
r is a real symmetric 3 × 3 matrix in the indices m,l, ∀r = 1, 2, 3:

Gml
r = ǫkrj ( Mkl Qjm + Mkm Qjl). (7.51)
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Then

r.h.s. 3 = [xp, xq][H,xr]L = −~
2ǫpqmGml

r xl. (7.52)

By comparing the coefficients of xl, we find that:

ǫpqkǫmrjMkmQjl = (ǫprjǫmqk + ǫqrjǫpmk + ǫpqmǫkrj)MklQjm + ǫpqkǫmrjMkmQjl. (7.53)

As the l.h.s. and the last term in the r.h.s. are equal the parenthesis term must vanish. By

using the identity

ǫijk =
1

2
(i − j)(j − k)(k − i) ; i, j, k = 1, 2, 3, (7.54)

we find that

ǫprjǫmqk + ǫqrjǫpmk + ǫpqmǫkrj =
1

4
(j − m)(k − p)(k − q)(p − q)(j − r)(m − r) (7.55)

This expression is antisymmetric in j,m and the subsequent summation with the symmetric

matrix Qjm gives the desired result.

We proceed to discuss the quantization of the T 3 Nambu-Poisson 3-algebra in

rel.(3.20) [18, 20]

{en, em, el} = −in · (m × l)en+m+l, (7.56)

where (en)n ∈ Z3 is the plane wave basis in T 3

en(x) = ein·x ; x ∈ R3, n ∈ Z3. (7.57)

We start with the non-commutative torus algebra given a fixed l = (l1, l2, l3) ∈ Z3

[xi, xj ] = ı~ǫijklk. (7.58)

By using the Baker-Cambell-Hausdorf formula for the set of exponential operators (3-d

magnetic translations)

Tn = ein·x ; n ∈ Z3, (7.59)

we obtain

TnTm = e−
ı~
2

det(n,m,l) Tn+m, (7.60)

or equivalently the Lie algebra of 3-dim. magnetic translations

[Tn, Tm] = −2ı sin[
~

2
det(n,m, l)] Tn+m. (7.61)

This is a generalization of the trigonometric algebra in 2-dim. phase space [74].

Fixing the vector l ∈ Z3 we have chosen a Casimir for the algebra (7.56) of a 2-d

classical torus T 2 embedded in T 3. The T 2 Nambu-Poisson algebra is:

{en, em}el
= −ın(m × l)en+m · el. (7.62)

So el(x) is a phase on this surface:

el(x) = eic. (7.63)
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At the quantum level the commutation relation (7.60) should get a phase factor for the

quantum Casimir

[Tn, Tm]Tl
= −2ı sin

[

~

2
det(n,m, l)

]

Tn+m+l, (7.64)

Tl = eıl·x = eic·I . (7.65)

This means that according to our prescription rel.(7.27) we have the quantum 3-

torus algebra

[Tn, Tm, Tl] = −2ı sin

[

~

2
det(n,m, l)

]

Tn+m+l, (7.66)

as a foliation of the algebra (7.61) for all values of l ∈ Z3 or of the Casimir

l · x = c · I. (7.67)

We close this last section by discussing the case of S3 quantum 3-algebra. We choose four

quantum coordinates xi, i = 1, 2, 3, 4 satisfying the commutation relations

[xi, xj ] = ı~ ǫijkl αk xl, i, j, k, l = 1, 2, 3, 4 (7.68)

where we have two Casimirs

C1 = α · x ; α ∈ R4, (7.69)

a quantum R3 space embedded in R4 and

C2 =
1

2
x2. (7.70)

The algebra (7.66) is an elegant way to write the little group subalgebra fixing a four vector

α of SO(4) which is an SO(3).

If the values of the Casimir C1 belong to the range

−
√

2C2 < C1 <
√

2C2, (7.71)

the R3 quantum space intersects the quantum sphere S3 into an S2 quantum sphere of

radius
√

2C2 − C2
1 . So we can obtain the quantum S3 sphere as a foliation of quantum S2

spheres analogous to the classical case.

We proceed to define the quantum S33-bracket as follows:

[xi, xj , xk]S3 = [xi, xj ]xk,C2
; i, j, k = 1, 2, 3, 4. (7.72)

This means that we have chosen αi = δik Hence we obtain

[xi, xj , xk]S3 = ı~ǫijklxl ; i, j, k, l = 1, 2, 3, 4. (7.73)

The quantum 3-algebra (7.73) satisfies the fundamental identity since its structure con-

stants are identical to the corresponding classical Nambu-Poisson 3-algebra. In our case

the validity of the Leibniz property is obvious for the first two arguments. According to
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this construction the quantization can be carried out for any quadratic 3-manifold embed-

ded in R4.

We close this last section with some comments. Our proposal is primarily guided by

the consistency of the quantum Nambu-Heisenberg evolution equations as well as for their

uniqueness in time evolution. Equally important is the validity of the quantum Liouville

equation in a three dimensional phase space(PS). This leads to the following picture which

emerges from the last two sections.

The quantum three dimensional phase space, is a foliation of two dimensional quantum

phase spaces, which is parametrized by the value of the phase space defining Casimir.

The choise of the second dynamical Hamiltonian can be arbitrary and the algebra of the

three quantum coordinates is preserved in time. If we want to change the roles of the

two Hamiltonians, then for linear or quadratic ones we checked that this is equivalent

with time reversal. This approach uniquely determines the quantum Nambu 3-brackets.

In the last section we demonstrated that the resulting quantum Nambu-Lie 3-algebras

can consistently be defined for all three spaces R3, S3, T 3 as well as for quadratic three

dimensional manifolds embedded in R4. We will come back with explicit constructions of

representations of the above quantum NL 3-algebras [75].

8. Conclusions-open problems

In this work we presented a geometrical perspective for classical and quantum Nambu dy-

namics in three dimensional phase space manifolds. The two Hamiltonians are interpreted

as follows: the first one defines the two dimensional phase space geometry, embedded in

the 3-d phase space, while the second one gives the dynamics of the trajectories on the

2-d phase space. This view persists in all higher n-dimensions of phase space where there

exist n-1 Hamiltonians. We choose n-2 of them to define a 2-d phase space embedded in

n-dimensions with the (n-1)th Hamiltonian to define the trajectories.

This perspective stressed, in effect, the importance of the SDiff(M3) group as the

all embracing framework of possible Nambu 3-d Hamiltonian systems which, after all, are

the flow equations for stationary incompressible fluids in the manifold. We presented ex-

plicit constructions, in the Clebsch-Monge gauge, of the structure constants of the Nambu-

Poisson 3-algebras for the cases of R3, the torus T 3 and the sphere S3 as well as of quadratic

3-d manifolds embedded in R4. The foliation of the three dimensional phase space by ar-

bitrary two dimensional symplectic manifolds, whose quantization is well known either

by operator methods or ⋆-quantization techniques (path integral methods), motivates the

definition of the quantum 3-bracket (or 3-geometry) as a foliation of quantum 2-brackets

(commutators).

The Nambu 3-bracket is a volume density element defined by three smooth func-

tions on (M3) which defines intersecting surfaces. Systems of triply orthogonal surfaces

on R3 space have interesting applications in hydrodynamics, in integrable potentials in

Quantum mechanics as well as in Soliton theory. There are corresponding non-linear Lie

algebras which appear as symmetries of such dynamical systems (W3 algebras , quantum
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groups, etc). Our approach has obvious connections with the general framework of non-

commutative geometry.

The quantum 3-commutator should be viewed as the corresponding quantum volume

density element. It is associated, in our case, with the intersection of quantum (fuzzy)

surfaces. We believe that quantum 3-algebras (constant, linear or generally non-linear) is a

new interesting area of mathematics in itself, with importance as well for the quantization

of fluid dynamics and more generally for the geometry of 3-d manifolds(branes) such as

our physical space (quantum gravity). Interesting open questions are the construction of

a consistent matrix model for interacting multiple M2 branes , a Matrix model for light

cone 3-branes and finally matrix quantization of Euler fluid dynamics including Vortices

and Turbulence.
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S. Cherkis and C. Sämann, Multiple M2-branes and generalized 3-Lie algebras, Phys. Rev. D

78 (2008) 066019 [arXiv:0807.0808];

M. Alishahiha and S. Mukhi, Higher-derivative 3-algebras, JHEP 10 (2008) 032

[arXiv:0808.3067];

J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, Supersymmetric

Yang-Mills theory from lorentzian three-algebras, JHEP 08 (2008) 094 [arXiv:0806.0738];

E.A. Bergshoeff, M. de Roo, O. Hohm and D. Roest, Multiple membranes from gauged

supergravity, JHEP 08 (2008) 091 [arXiv:0806.2584];

C. Sochichiu, On Nambu-Lie 3-algebra representations, arXiv:0806.3520;

– 34 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA20%2C6122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ARNUA%2C57%2C95
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ARNUA%2C57%2C95
http://arxiv.org/abs/0704.0240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C111%2C61
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C111%2C111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C111%2C111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C183%2C1
http://arxiv.org/abs/hep-th/9602016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APCPC%2C453%2C49
http://arxiv.org/abs/hep-th/9809073
http://arxiv.org/abs/math-ph/0408012
http://arxiv.org/abs/hep-th/0312048
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB486%2C228
http://arxiv.org/abs/hep-th/0003292
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C37%2C475
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C37%2C475
http://arxiv.org/abs/hep-th/9507125
http://jhep.sissa.it/stdsearch?paper=05%282008%29054
http://arxiv.org/abs/0804.2662
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C25%2C142002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C25%2C142002
http://arxiv.org/abs/0804.3567
http://jhep.sissa.it/stdsearch?paper=06%282008%29020
http://jhep.sissa.it/stdsearch?paper=06%282008%29020
http://arxiv.org/abs/0804.2110
http://jhep.sissa.it/stdsearch?paper=06%282008%29075
http://jhep.sissa.it/stdsearch?paper=06%282008%29075
http://arxiv.org/abs/0805.1012
http://jhep.sissa.it/stdsearch?paper=07%282008%29111
http://arxiv.org/abs/0805.4363
http://jhep.sissa.it/stdsearch?paper=08%282008%29045
http://arxiv.org/abs/0806.3242
http://arxiv.org/abs/0809.1086
http://arxiv.org/abs/0806.3534
http://jhep.sissa.it/stdsearch?paper=08%282008%29072
http://arxiv.org/abs/0806.4044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD79%2C025002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD79%2C025002
http://arxiv.org/abs/0807.0163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C066019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C066019
http://arxiv.org/abs/0807.0808
http://jhep.sissa.it/stdsearch?paper=10%282008%29032
http://arxiv.org/abs/0808.3067
http://jhep.sissa.it/stdsearch?paper=08%282008%29094
http://arxiv.org/abs/0806.0738
http://jhep.sissa.it/stdsearch?paper=08%282008%29091
http://arxiv.org/abs/0806.2584
http://arxiv.org/abs/0806.3520


J
H
E
P
0
2
(
2
0
0
9
)
0
3
9

J. Bedford and D. Berman, A note on quantum aspects of multiple membranes, Phys. Lett. B

668 (2008) 67 [arXiv:0806.4900];

C.-S. Chu, P.-M. Ho, Y. Matsuo and S. Shiba, Truncated Nambu-Poisson bracket and entropy

formula for multiple membranes, JHEP 08 (2008) 076 [arXiv:0807.0812];

O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043

[arXiv:0807.4924];

G. Bonelli, A. Tanzini and M. Zabzine, Topological branes, p-algebras and generalized Nahm

equations, arXiv:0807.5113;

B.E.W. Nilsson and J. Palmkvist, Superconformal M2-branes and generalized Jordan triple

systems, arXiv:0807.5134;

K. Ueda and M. Yamazaki, Toric Calabi-Yau four-folds dual to Chern-Simons-matter

theories, JHEP 12 (2008) 045 [arXiv:0808.3768];

M. Yamazaki, Octonions, G2 and generalized Lie 3-algebras, Phys. Lett. B 670 (2008) 215

[arXiv:0809.1650];

C. Krishnan and C. Maccaferri, Membranes on calibrations, JHEP 07 (2008) 005

[arXiv:0805.3125];

T.L. Curtright, D.B. Fairlie and C.K. Zachos, Ternary Virasoro-Witt algebra, Phys. Lett. B

666 (2008) 386 [arXiv:0806.3515].

[66] S. Okubo, Triple products and Yang-Baxter equation. 2. Orthogonal and symplectic ternary

systems, J. Math. Phys. 34 (1993) 3292 [hep-th/9212052]; Introduction to octonion and

other non-associative algebras in physics, Cambridge University Press, Cambridge U.K.

(1995).

[67] J.S. Conway and D.A. Smith, On quaternions and octonions, A.K. Peters Ltd., U.S.A. (2003).

[68] E.G. Floratos and G.K. Leontaris, Octonionic self-duality for supermembranes, Nucl. Phys.

B 512 (1998) 445 [hep-th/9710064].

[69] D.B. Fairlie, Moyal brackets in M-theory, Mod. Phys. Lett. A 13 (1998) 263

[hep-th/9707190].

[70] M. Ali-Akbari, M.M. Sheikh-Jabbari and J. Simon, The relaxed three-algebras: their matrix

representations and implications for multi M2-brane theory, JHEP 12 (2008) 037

[arXiv:0807.1570].

[71] A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization

formula, Commun. Math. Phys. 212 (2000) 591.

[72] M. Rieffel, Projective modules over higher dimensional noncommutative tori, Canad. J. Math.

40 (1988) 257.

[73] M. Axenides, E. Floratos and S.J. Nicolis, Quantization of linear Nambu flows and the

NC3-torus, arXiv:0901.2638.

[74] D.B. Fairlie, P. Fletcher and C.K. Zachos, Trigonometric structure constants for new infinite

algebras, Phys. Lett. B 218 (1989) 203.

[75] M. Axenides, E. Floratos and S.J. Nicolis, Quantum Nambu-Lie 3-algebras for S3 and T 3

branes, in preparation.

– 35 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB668%2C67
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB668%2C67
http://arxiv.org/abs/0806.4900
http://jhep.sissa.it/stdsearch?paper=08%282008%29076
http://arxiv.org/abs/0807.0812
http://jhep.sissa.it/stdsearch?paper=11%282008%29043
http://arxiv.org/abs/0807.4924
http://arxiv.org/abs/0807.5113
http://arxiv.org/abs/0807.5134
http://jhep.sissa.it/stdsearch?paper=12%282008%29045
http://arxiv.org/abs/0808.3768
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB670%2C215
http://arxiv.org/abs/0809.1650
http://jhep.sissa.it/stdsearch?paper=07%282008%29005
http://arxiv.org/abs/0805.3125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB666%2C386
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB666%2C386
http://arxiv.org/abs/0806.3515
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C34%2C3292
http://arxiv.org/abs/hep-th/9212052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB512%2C445
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB512%2C445
http://arxiv.org/abs/hep-th/9710064
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA13%2C263
http://arxiv.org/abs/hep-th/9707190
http://jhep.sissa.it/stdsearch?paper=12%282008%29037
http://arxiv.org/abs/0807.1570
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C212%2C591
http://arxiv.org/abs/0901.2638
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB218%2C203

